Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

Completed Technology Project (2009 - 2011)

Project Introduction

Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and extraterrestrial exploration missions, Crew Exploration Vehicles, extended-life orbital transfer vehicles, and space depots will range from 10 to 50 W at temperatures between 20 and 120 K. Turbo-Brayton cryocoolers are ideal for these systems because they are lightweight, compact and very efficient at high cooling loads, in addition to their inherent attributes of high reliability; negligible vibration; long, maintenance-free lifetimes; and flexibility in integrating with spacecraft systems and payloads. To date, space-borne turbo-Brayton technology has been developed for modest cooling loads. During the proposed program, Creare will develop an advanced, high efficiency turbine optimized for a high-capacity cryocooler. The advanced turbine will enable a landmark reduction in cryocooler input power and overall cooling system mass. In Phase I, we defined the cryocooler requirements for a particular mission class, developed the conceptual design of a multistage cryocooler to meet the requirements, developed the preliminary design of the advanced turbine and successfully performed proof-of-concept tests on the turbine. During Phase II, we will fabricate the turbine optimized to provide 5-20 W of net refrigeration at 20 K and demonstrate its performance at prototypical operating conditions.

Primary U.S. Work Locations and Key Partners

Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

Completed Technology Project (2009 - 2011)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead Organization	NASA Center	Moffett Field, California
Creare LLC	Supporting Organization	Industry	Hanover, New Hampshire

Primary U.S. Work Locations	
California	New Hampshire

Project Transitions

February 2009: Project Start

September 2011: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

